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Polarisation of the vacuum near a black hole inside a 
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G D R  

Received 16 June 1982 

Abstract. The renormalised expectation value in the Hartle-Hawking vacuum of the 
stress-energy tensor of a massless conformally coupled scalar field is discussed near the 
horizon of a Schwarzschild black hole inside a spherical cavity. The values of radial 
pressure, tangential pressure and energy density depend on the coordinate radius of the 
cavity. For large cavities we recover the results of Candelas, i.e. we obtain a negative 
energy density near the horizon. As the cavity radius decreases, the energy density first 
decreases to a minimum and then increases through zero to positive values. 

1. Introduction 

The problem of calculating the expectation value of the stress-energy tensor of a 
quantum field in a curved space-time can be solved by using standard regularisation 
methods such as point-splitting procedures (Christensen 1976, 1978, Adler et a1 1977, 
Adler and Lieberman 1978, Wald 1977, 1978). In many cases there are, however, 
technical difficulties associated with the evaluation of the expectation value. For 
instance, the mode functions corresponding to the various proposed vacuum states of 
a quantum field propagating in a black hole space-time (Unruh 1976, Israel 1976, 
Gibbons and Perry 1978, Fulling 1977, Iyer and Kumar 1979a, 1979b, Sciama et a1 
1981) cannot be completely expressed in terms of known functions. Since the point- 
separated expectation value is a distribution, numerical methods can hardly be applied 
in general. Therefore, up to now few attempts have been made to obtain the 
stress-energy tensor of a quantum field interacting with a black hole (Christensen and 
Fulling 1977, Candelas 1980, Page 1982, Fawcett and Whiting 1982, Elster 1982a) 
the complete form of which is necessary for, e.g., solving the back-reaction problem 
of black hole evaporation (Candelas 1980, Kodama 1980, Hajicek and Israel 1980, 
Bardeen 1981, Frolov 1981, Hiscock 1981). 

Fortunately, in performing renormalisation calculations in black hole metrics one 
can take advantage of the fact that in these metrics all (integer spin) fields which are 
analytic solutions of the corresponding field equations in the whole manifold turn out 
to be periodic in imaginary time with period 277/~, where K is the surface gravity of 
the black hole (Hartle and Hawking 1976, Gibbons and Perry 1976, 1978, Hawking 
1981). This has been used by a number of authors (Candelas 1980, Frolov 1982, 
Elster 1982b) to examine the vacuum polarisation near the horizon of a black hole. 

Since a black hole emits particles like a hot body of temperature K / ~ T ,  it can be 
in thermal equilibrium with a gas of massless quanta. This equilibrium is, however, 
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only stable if the whole system is placed in a sufficiently small box with perfectly 
reflecting walls (Hawking 1976, Gibbons and Perry 1978, Wilkins 1979). The presence 
of the walls not only stabilises the thermal equilibrium between black hole and radiation 
field, but also modifies the expectation value of the stress-energy tensor of the quantum 
field in question. For a box which is large compared with the size of the black hole, 
the boundary correction to the stress-energy tensor can be shown to be important 
only in a region near the boundary (Elster 1982a). However, for small boxes the 
boundary may alter the expectation values of energy density and pressure even in the 
vicinity of the horizon. As is well known (Dowker and Kennedy 1978, Deutsch and 
Candelas 1979, Kennedy et a1 1980), near a boundary the renormalised stress-energy 
tensor of a conformally coupled scalar field varies with the inverse third power of the 
distance from the boundary, provided that Dirichlet boundary conditions are imposed. 

The aim of this paper is to discuss the vacuum polarisation near the horizon of a 
spherically symmetric black hole when the hole is at the centre of a spherical cavity. 
We therefore generalise some results of a paper by Candelas (1980) which are 
recovered for large radii of the cavity. This generalisation is desirable for at least two 
reasons. As already mentioned, the presence of the boundary is necessary to stabilise 
the thermal equilibrium between black hole and quantum field. Moreover, any 
situation in which the presence of a boundary contributes to the renormalised expecta- 
tion values of physical quantities in a curved space-time is of particular interest. 

Throughout we closely follow Candelas (1980) in his approach to the renormalisa- 
tion problem. Several technical details from his paper are used without mentioning 
this in any case. We confine ourselves to a scalar massless conformally coupled field 
d. 

2. Renormalisation of the stress-energy tensor 

Let pr(r) = (OIT: IO)ren, pt(r) = (OIr :  I0)ren = ( O I r G  IO>ren and F (r) = IO>ren be the 
renormalised values of radial pressure, tangential pressure and energy density in the 
Hartle-Hawking vacuum (r, 6, 9 and t denote the usual Schwarzschild coordinates). 
Since all physical quantities are well behaved in this vacuum on both the past and 
future horizons (with respect to a physically reasonable frame), the quantities pr, pt 
and ,U remain finite as r + 2 M  and must satisfy 

where M is the mass of the black hole. (Units with G = c = A = k = 1 are used.) We 
employ the DeWitt-Christensen technique of point-splitting regularisation 
(Christensen 1976, 1978). Separating points along radial geodesics, we may write the 
renormalised quantities in the form 

pr(r)=1imFr(r ,  r + r  r r )+pFf(r ,  r ' ) l+pfin(r)  (2.2) 

(similarly for pt and F ) ,  where quantities with tildes are the point-separated expecta- 
tion values, and the superscripts inf and fin are used to denote the divergent and the 
finite (direction-dependent) counterterms, respectively. From Christensen's (1976) 
paper we conclude that the counterterms should take the form 

( 2 . 3 ~ )  p y  = - 3pI"f = 3pinf  = (3/2~r').s-~(r, r') 
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p:n = (1/48n2)(MZ/r6),  

pen = (47/720x2)(M2/r6) - (Y/30n2)(M/r5), 

pfi” = (11/3607rZ)(M2/r6)- (1/607r2)(M/r5), 
(2.3b) 

where E (r, r‘) is the geodesic distance between two radially separated points with 
coordinates r and r’. Equation (2.3b) leads to the trace anomaly of the stress-energy 
tensor of a massless conformally coupled scalar field in the Schwarzschild space-time, 

p r + 2 p t - p  = (1/607r2)(M2/r6). (2.4) 

Because of (2.1) and (2.4), near the horizon the number of unknowns which are to 
be determined is reduced to one. For later purposes the following expansion of ( 2 . 3 ~ )  
proves to be useful: 

E 
-4 (r, r’ = 2M) = (1/64M2)(r - 2M)-’ 

-(1/192M3)(r -2M)-’+ 17/11 520M4+O(r  -2M). 

3. Pressure and energy density near the horizon 

Finite-temperature quantum field theory in a Schwarzschild space-time can be 
conveniently studied by performing a Wick rotation t = -is to imaginary values 
of the time coordinate. In the coordinates (r, 6, cp, 5) the Hartle-Hawking 
propagator GH(r, 6, cp, -i t ;  r‘, 6’, cp’, -it’) is a solution of 

(3.1) 

which is periodic in 5 with period 87rM. The point-separated expectation value of 
the stress-energy tensor results from the solution of (3.1) in the usual way: 

( o l ~ a p l o )  = -(i /3)(G~,a,o,g”o + G H , ~ ’ , & ~ ’ ~ )  

sin-’  OS(^ -r‘)a(O -~‘ )s ( (P  -cp‘)~(t-t’) ;a - - - i r - -2  G H ; ~  

(3.2) 

(In the last equation the metric is assumed to satisfy Einstein’s vacuum field equations.) 
On the Euclidean section of the analytically continued space-time the only non- 
vanishing components of the parallel propagator relating quantities on radial geodesics 
are 

a’ 0 ’  -+ (i/6)(GH,y,y,gYY’gap + G H . ~ ; ~  + GH,a,;o,g ag 9). 

g,,, = (rr’)”*(r - 2 ~ ) - ” ’ ( r ‘  - 2 ~ ) - ” ~ ,  

g,,, = rr’ sin 6, 

go33 = rr’, 
2 1 / 2  I (3.3) 

gss, = (r’-  2 ~ )  (r - 2~)” ’ ( r r~ ) -” ’ .  

As shown by Candelas (19801, the solution of (3.1) may be written as a Fourier series 
the coefficients of which take the form of multipole expansions, 

33 X 

GH=(i/167r2Mr) exp[il([-t’)/4M] 1 ( n  +$)”’Pn(cos y)R!,(r, r‘), 
1=-X n = O  

(3.4) 
cosy=cos4cos4’+sin6sin6‘cos(cp-cp‘) .  

The radial functions R f ,  satisfy 

{r(r-2M) d2/dr2+2(r - -M)d/dr -n(n  +1) 

-1’r’/[16M2(r -2M)]}r-’R!,(r, r’) = --8(r-r’). (3.5) 
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Let ro be the coordinate radius of the cavity. Imposing Dirichlet boundary conditions 
on the field, we are interested in solutions of (3 .5)  which vanish at r = r O ,  It is convenient 
to split the radial functions into a part lRf, (which is an appropriate solution of ( 3 . 5 )  
if the boundary is absent) and a boundary correction 2R;. The contribution of 1Rf 
to GH corresponds to the field of a scalar point charge located at the point ( r t ,  a', p') 
outside the black hole. The boundary correction 2R: is a solution of the homogeneous 
equation corresponding to ( 3 . 5 ) ,  i.e. it corresponds to a field of scalar charges located 
in the region r > ro.  Using the variable 77 = r / M  - 1 ,  we obtain in the case 1 = 0 (cf 
Candelas 1980, Elster 1982b) 

r-l2R 5: ( r ,  r ') = - M-' (n  + i)-1'2P, (77 'V', (77 )Q, (qO)/Pn (77 01, (3 .66)  

where the P, and Qn are Legendre functions of the first and second kind, respectively. 
For l I I  3 1 we have 

rC12R f , ( r ,  r ' )  = - (2IllM)-'(n +%'pf , ( r l ' )p f , (~)qf ,  (TO) /P! , (TO) .  (3 .76)  

The pf, and qf, cannot be expressed in terms of known functions. (The functions P,, 
Q,, pf, and qf, are defined as in Candelas (1980) up to normalisation; some of their 
properties are given in the appendix.) 

Using equations ( 3 . 3 ) ,  (3 .4) ,  (3.6u, b ) ,  ( 3 . 7 4  b ) ,  ( A l )  and ( A 6 ) ,  we are now able 
to calculate the limit r' + 2M in equation (3 .2) .  Since each point (r' = 2M, 6', cp', 5 ' )  
is a fixed point of the symmetry group generated by the Killing vector a/a[', only 
terms with 1 = 0, 1 ,  2 contribute to the point-separated expectation value in this limit. 
Because of (2 .1)  and (2 .4)  it suffices to evaluate one component of the stress-energy 
tensor. For convenience, the tangential pressure p ,  = I pl + ?pI is calculated because it 
involves no 1 = 2 term. If the boundary were absent, we would obtain from (3 .2)  in 
the partial coincidence limit a'+ -9, c p ' +  p, ['+ 6 
&(r,  r' = 2 M )  

m 

= - (768.rr2M4r2)-' (n  + ; ) [8M(r  - 2M) dQ,/dq 
n = O  

- ( r + 2 M I 2 n ( n  + l ) Q , ( v )  

+2J2r3I2(r -2M)"'(n ++)-"' dq;/dT 

+ ( 1 / J Z ) r 5 / 2 ( r  - 2 ~ ) - l / ~ ( ~  +: ) -1 /2q: (77)1 .  ( 3 . 8 ~ )  

The boundary correction to the tangential pressure requires no renormalisation, thus 
we can also perform the limit r + 2M to obtain 

2Pt(2M) = ( 3 8 4 ~ ~ M ~ I - l  [(n +;hf,(To)/nf,(Vo) 

- 2n (n  + l ) ( n  + i)3'2Q, (vo) /P ,  (77011. 

m 

n = O  

(3 .8b)  

Since the q!,(q) asymptotically approach the Legendre functions Qf,(v) as q + 1 (see 
appendix), it is now useful to set q f ,  = Qf, +dk in ( 3 . 8 ~ ) .  The advantage of this 
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splitting is that the summation over n can be carried out in all terms on the right-hand 
side of ( 3 . 8 ~ )  which are singular as r + 2M. (This can be accomplished by using 
(A5a, b )  and (A14a).) Taking into account the counterterms ( 2 . 3 ~ )  and (2.36) and 
the expansion (2.5), we arrive at the renormalised expectation value 

1pt(2M) = - (7687r2M4)-’ &j- lim 1 (n +$)1/2[-2d2(r -2M)1/2r-1/2 dd;/dT 
m 

r+2M , = o  

(3.9) 

In order to perform the limit in (3.9) we need an asymptotic expansion of the (it, as 
7 + 1. Equations ( A l l )  and (A13) yield 

4; (77) = (n + +)1’2{2~,, - in  (n + 1)[24(n + 1) + 27 - t ]  +a-$ In 2)(77 - 11”~ 

( 
--(1/di)r1/2(r -2~)-1/24~(77)1).  

+o[ (T  - 1)3/2]+$(n +$)l/’(q - 1)”’ ln(7 - 1)[1+ O(T - 111, (3.10) 

where $(x) = (d/dx) In I‘(x), y is Euler’s constant, and the I, are the integrals defined 
by (A12). Somewhat surprisingly, there is also a divergent term in (3.10) as 77 + 1, 
which is proportional to (71 - 1)’l2 ln(q - 1). Therefore, the limit 77 + 1 cannot be 
performed in (3.9) by simply substituting the expansion (3.10) for 4;. To circumvent 
this difficulty we remember equation (A2) of the appendix, which leads to the ansatz 

(3.11) 

the asymptotic expansion as 77 + 1 of the being obtainable from (3.10) and (A2). 
Using (A5a) and (A5b) we now succeed in deriving a final expression for the total 
tangential pressure p1(2M) = lpt(2M) + 2pt(2M) at the horizon. A straightforward 
calculation yields 

pt(2M)= (768v2M 1 (20-2 Lo (n +i){21n -[n(n +1)+1I[$(n +l)+rl  

4!,(77) = -(n +:)1/2(q -1)1/2Qn(~)+!!,(~), 

oc 
4 -1 1 

+ 3n (n + 1)/4 +i-qA(770)/pA(770) + 2(n + ~ / ~ n  (n + 1)~,(.rl~)/p,(tl~)$ 
(3.12) 

This expression must be evaluated numerically in terms of the coordinate radius ro 
of the cavity. Following Candelas (1980) we calculate the functions p i  (x) in the range 
1 .s x s 2 by summing the series (A8), (A9). In the range 2 < x < 00 these functions 
are calculated by using a fourth-order Runge-Kutta procedure starting at x = 2 with 
the values obtained by summing the series (A8), (A9) and the corresponding series 
for dp;/dx. The ratio qA(x)/pi(x) is easily computed with the help of equation (A10). 
The values of the Legendre functions P , ( x )  and Q,(x) can be determined by using 
the integral representations (A3a) and (A3b). 

Figure 1 shows radial pressure, tangential pressure and energy density at the 
horizon. The sum of p1(2M) and pt(2M) is independent of ro. It is equal to half the 
anomalous trace, cf equation (2.4). For large ro the renormalised expectation value 
of the stress-energy tensor tends to the values p1(2M) = - p (2M) = 10.37 x 10-6M-4 
and pt(2M) = 2.82 x 10- ‘w4  which have been obtained by Candelas. The radial 
pressure has a maximum of 13.07 x at ro = 4.07M, whereas the tangential 
pressure has a minimum of 0.13 x 10-6M-4 there. Both pressures are equal for 
ro = 2.92M. Radial pressure and energy density have a common zero at ro = 2.75M. 

It can easily be shown that p1(2M), pt(2M) and p (2M) completely determine the 
renormalised stress-energy tensor in Kruskal coordinates at the point of intersection 
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Figure 1. Radial pressure pr, tangential pressure pt and energy density I* at the horizon. 

of the past and future horizons. However, at the rest of the horizon this tensor involves 
the derivative of pr + p at r = 2M. Thus a further investigation providing the value of 
this derivative is necessary. (Using a suitable approximation, Page (1982) estimated 
this derivative in the limit ro+ 00.) 
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Appendix 

In this appendix we give some properties of the radial functions, which are solutions 
of the homogeneous equation corresponding to (3.5). For I = 0 the radial equation 
is solved by Legendre functions of the first and second kind, respectively. The 
behaviour of these functions in the neighbourhood of x = 1 is 

('41) P,(x) = ( n  + 2 )  

('42) 

1 1/2 [l +In(n  + l ) (x  - l )+&n(n  + l ) ( n 2 + n  -2)(x - q 2 + .  . . 1, 
Q,(x) = - 5  ln(x - 1) +; In 2 - 4 ( n  + 1) - y + , . . . 
For numerical computations one can take advantage of the integral representations 
(ErdClyi er a1 1953) 

P , ( x ) = ( ~  +$"'T [ X + ( X ~ - ~ ) ~ " C O S ~ ] "  dt, (A3a) 

Q,(x) = 2-"-' lor ( x  +cos t)-"-'(sin t)'ni-l dr. 
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The functions Pn and Q, obey Heine's formula 

from which we obtain 

For 111 5 1 the radial equation cannot be solved by known functions. Following 
Candelas (1980), we define two linearly independent solutions pL(x) and qfl(x) by 
their behaviour in the neighbourhood of x = 1 as follows: 

~ f t ( ~ ) ~ ( ~ + ~ ) " ~ ( ~ - l ) " " ~ { 1 + ( 1 ~ - ) I ~ + 2 ~ ( ~  +1))/[4(111+1)](~-1)+. , .}, (A6) 

qfi(x)=(n + y z ( x - l ) - ~ ~ ~ ~ z + * .  . . (A7) 

In this paper we especially make use of the functions pfi(x) and qfi(x). In the range 
1 C x < 3 the pfi (x) may be represented by the series 

where the coefficients are given by 

co=(n+,)  1 1/2  , c1= ( n  +$)'/'n (n + 1)/4, 

cz  = (n  + t)'/'[2n ' ( n  + 1)' - 6n (n  + 1) + 31/96, (A9) 

k 23. 1 
Ck = [2k (k + 1)]-'[(tI + n - k z  + 1 ) C k - 1  + i C k - 2  + GCk-31, 

From the Wronskian relation between the functions pfi and q:, it follows that the qfi 
may be expressed in terms of the pfi as follows: 

From (A6) and (A10) we obtain an asymptotic expansion of the qfi(x) as x + 1, namely 
1 q n ( X ) = ( n  +t)1i2(X - I ) - ' / ~ + ( ~  +$)1/2[n(n +1)/4+2z,,](~ - I ) ' / ~ + O [ ( ~  -1)3/2] 

x{ l+n(n  + l ) ( x  - 1 ) / 4 + 0 [ ( ~  -l)']}, ( A l l )  

where the abbreviation 
m 

Zn = jl { (n  + t ) [ p ! ,  (x)]-' - (x - l)-' + n (n + 1)/2}(x2 - 1)-' dx (A12) 

has been used. 
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For 77 = 1 the functions p i ,  and q!, may be approximated by Legendre functions 
P!, and QL. As x + 1, the Q i ( x )  exhibit the asymptotic behaviour 

Q i ( x )  = (n  ++)'/'(x - l ) - ' / '+ (n  +$)'/'{n(n + l)[$(n + l )+ r -$ ] -$ ) (x  - 1)"' 

" 4 3 )  

Using equation 3.6(5) of Erdelyi et a1 (1953) we obtain from (A4) 

cc 
(x + l ) (x  - 1)-2 = C (n + ~ ) ' ' 2 Q ~ ( ~ ) .  

n = O  

(A14a) 

(A14b) 
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